Weighted norm inequalities for strongly singular convolution operators

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted Norm Inequalities for Maximally Modulated Singular Integral Operators

We present a framework that yields a variety of weighted and vector-valued estimates for maximally modulated Calderón-Zygmund singular (and maximal singular) integrals from a single a priori weak type unweighted estimate for the maximal modulations of such operators. We discuss two approaches, one based on the good-λ method of Coifman and Fefferman [CF] and an alternative method employing the s...

متن کامل

Weighted Norm Inequalities for Fractional Operators

We prove weighted norm inequalities for fractional powers of elliptic operators together with their commutators with BMO functions, encompassing what is known for the classical Riesz potentials and elliptic operators with Gaussian domination by the classical heat operator. The method relies upon a good-λ method that does not use any size or smoothness estimates for the kernels. Indiana Univ. Ma...

متن کامل

Sharp weighted norm inequalities for Littlewood–Paley operators and singular integrals

We prove sharp Lp(w) norm inequalities for the intrinsic square function (introduced recently by M. Wilson) in terms of the Ap characteristic of w for all 1 < p <∞. This implies the same sharp inequalities for the classical Lusin area integral S(f ), the Littlewood–Paley g-function, and their continuous analogs Sψ and gψ . Also, as a corollary, we obtain sharp weighted inequalities for any conv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1984

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1984-0719660-6